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Abstract—The Mission Data System is a unified flight, 
ground, simulation, and test software system for space 
missions. Currently, its first application will be the Mars 
Smart Lander mission, where common MDS software 
frameworks will be adapted for use in interplanetary cruise, 
entry-descent-landing, and rover operations. A key 
architectural theme of MDS is explicit modeling of states. 
This provides a sound foundation for estimation, control, 
and data analysis. Certain essential states are relative rather 
than absolute. Relative states are defined in graph state 
variables (GSVs) as relationships between nodes in a graph. 
GSVs are a general graph-based state representation that (1) 
derives a state’s value by combining relationships, (2) 
produces different results for different derivation paths, (3) 
handles changes to topology and relationships between 
nodes, and (4) represents dependencies between 
relationships (e.g. correlations). This paper shows example 
GSV representations for spacecraft orientation, location, 
trajectories, dynamics, and kinematics. 
 
 
 TABLE OF CONTENTS 

 1. INTRODUCTION 
 2. MDS OVERVIEW 
 3. STATE 
 4. RELATIVE STATE REPRESENTATION TODAY 
 5. MDS GRAPH STATE VARIABLES 
 6. MARS EDL EXAMPLE 
 7. SYSTEMS ENGINEERING OF RELATIVE STATES 
 8. CONCLUSION 
 9. ACKNOWLEDGEMENTS 

 
  1. INTRODUCTION 
Future space missions are becoming more challenging and 
complex. Flybys of planets are now being followed with 
landers and in-situ mobile vehicles. Mobile vehicles have 
demanding objectives to achieve scientific objectives 
without the intervention of ground controllers. Obstacles 
must be avoided. Chance objects of interest need to be 
efficiently identified and investigated on the way to 
achieving specific ground-directed mission objectives. 
Timely communications with Earth may be impractical 
because of the long distances involved, or because of 

blocked communications. Upcoming flyby missions are also 
becoming more challenging. The spacecraft must 
autonomously compensate for uncertainties in small body 
trajectories that cannot be anticipated by their human 
operators on Earth. Missions that previously could be 
planned in advance as detailed sequences of commands, 
now must be flexible to handle uncertainties in time, 
trajectory, and science opportunities. Graph state variables 
provide a way for spacecraft to represent new targets and 
obstacles relative to known locations. Ground-based 
operators need not be in the loop; additions can be made in a 
timely autonomous fashion in response to events in the 
environment. 
 
The availability of more capable and affordable computing 
power enables the above mission objectives. But this also 
puts more responsibility on software to implement more 
advanced capabilities. Further, spacecraft technology 
advances now make it affordable to launch many more 
spacecraft than in the past. We can now launch missions that 
are comprised of a fleet of cooperating spacecraft, putting 
further demands on spacecraft operations. Graph state 
variables can represent the trajectories of spacecraft fleets 
and the communication networks by which they coordinate 
their operations. Mission operations for this next wave of 
spacecraft will be prohibitively expensive if we continue to 
orchestrate every detail of spacecraft direction using human-
intensive sequencing tools and processes. Clearly, there is a 
need for more spacecraft autonomy in the next generation of 
spacecraft to simplify human-spacecraft interactions. Graph 
state variables in concert with MDS goal-directed behavior 
will go a long way towards achieving autonomous fleet 
operations. 
 
Software costs will limit the potential for taking advantage 
of these new opportunities in spacecraft autonomy. 
Currently, spacecraft software is built starting with inherited 
capabilities, standards, and operational paradigms from 
previous missions. Much, however, is re-written and 
validated because many requirements about the spacecraft 
and mission is hidden within the software code without an 
abstraction that facilitates reuse. Even when inherited 
software is well documented, the requirements and 
assumptions that went into its design are so interwoven into 



its implementation that reuse requires significant rework or 
discarding. 
 
The Mission Data System (MDS) is a unified flight, ground, 
and test architecture under development at the Jet 
Propulsion Laboratory. It will provide a set of reusable 
software frameworks, inspectable models, and a 
methodology and language to identify and express 
requirements in their terms. This paper describes graph state 
variables, a specific MDS software framework designed for 
modeling relative states. 
 
MDS has a number of general architectural patterns for 
models. One pattern is explicitly representing state as a 
function of time with a specified uncertainty. Many states 
are absolute (e.g. volume, pressure, current) and can be 
modeled as scalars with units. Other states are relative and 
are defined with respect to a reference point (e.g. voltage 
with respect to a ground, location with respect to an origin, 
orientation with respect to a coordinate frame). Graph state 
variables represent such reference points as nodes in a 
graph, and a relative states as edges between pairs of nodes 
in the graph. Graph state variables link and combine relative 
states along paths in graphs. A graph rather than a tree 

topology allows for alternate relative state derivations that 
can depend on mission envionment. Mission requirements 
on relative states are modeled explicitly in terms of graph 
state variable architectural elements. The implemented 
elements are easily inspected and modified from mission to 
mission. Further, graph state variables provide a common 
architectural framework for representing relative states on 
both ground and flight software systems. Graph state 
variables and the entire MDS architecture will enable future 
mission software specialists to concentrate on building new 
autonomous capabilities, rather than on re-inventing the 
past. 
 
 2. MDS OVERVIEW 
The Mission Data System guiding belief is that software 
plays a central and increasingly important system role that 
must be reconciled with the overall systems engineering 
approach adopted by a project. Both software and systems 
engineering apply across all parts of a project and to all 
elements of the environment affecting the mission. 
Therefore, it is essential that systems and software share a 
common approach to defining, describing, developing, 
testing, operating, and visualizing what systems do. To 

Figure 1.  This diagram emphasizes several MDS architectural themes: the central role of state knowledge and models, 
goal-directed operation, separation of state determination from control, and closed-loop control. Graph state variables 
manifest the central role of state knowledge and models. Graph state variables represent relative states and model their 
composition into combined states. 



realize this belief, MDS is founded on a set of architectural 
themes that shape the design [1]. These themes are 
emphasized because they have a broad impact on the design 
and they differ from earlier spacecraft engineering practices. 
Key themes that are manifested by graph state variables are 
described below. 
 
State and Models Are Central 

MDS is a state-based architecture, where state is a 
representation of a momentary condition of an evolving 
system and models describe how states evolve and are 
affected (see figure 1). All clients of state access it in a 
uniform way through state variables, as opposed to a 
program’s local variables. Figure 2 illustrates the clients of 
state.  
 
A state timeline describes what a state’s value is as a 
function of time. State timelines are a complete record of the 
system’s history, expectations, and plans. As well as 
providing the fundamental coordinating mechanism on the 
spacecraft, state timelines are also the objects of a uniform 
mechanism of information exchange between flight and 
ground. 
 
Graph state variables are used to represent relative states. 
GSVs model relative states as directed edges between pairs 
of nodes in a graph. Each edge represents a relative state as 
transitive relationship timeline between its two nodes. A 
graph state variable can derive a relative state by composing 
the relative states along a path in its graph. 
 
Explicit Use of Models 

MDS tries to express domain knowledge explicitly in 
inspectable models rather than implicitly in program logic. 
The models separate the application-specific knowledge 
from the reusable logic that applies domain knowledge to 
solve a problem. A model built for a specific mission may 
also be reused on future projects. The task of customizing 
MDS for a mission, then, becomes largely a task of defining 
and validating new or reused models. 
 
Graph state variables provide a reusable framework for 
modeling relative states as nodes and edges in a graph. The 
type of a graph state variable is defined by the type of 
relative state that appears on its edges. The type is a 
transitive relationship that explicitly models how to 
represent a particular kind of relative state for a particular 
domain. The type also models how relative states are 
composed together to form derived relative states. The 
composition models are abstracted in terms of relationship 
operators for concatenation and inversion. Derived 
relationships are described in more detail in section 5. 
 
A graph state variable type that models spacecraft attitude 
and trajectory is an example of a model that can be reused 
by subsequent missions. In this case, the relationship type is 
a combined translation and rotation that has applications in 
the navigation, guidance and control, and robotics domains.  

This kind of relationship is called a six degree of freedom 
transformation and is discussed further below and in section 
5. 
 
Join Navigation, Attitude Control, and Robotics 

MDS builds navigation, attitude control, and robotics 
applications from a common mathematical base. They have 
been built in the past as separate development efforts 
because they operate over different timescales or in different 
environments, or because their dynamics don’t greatly affect 
each other. When they need to share information, in cases 
such as maneuver execution or pointing towards celestial 
bodies, the interfaces have been ad hoc and conversions are 
needed between different forms of knowledge 
representation. 
 
In general, elements that are separately engineered may 
work by themselves, but often fail to work together. 
Separately engineered applications set the stage for bugs to 
slip through the cracks simply because of the large number 
of possible interactions. This is a major source of 
unreliability. Future missions will have greater needs to 
share more information between disciplines that have been 
separately engineered in the past. For example, rovers will 
need to navigate to targets identified by orbiting mapping 
spacecraft and will need to point antennas to Earth or 
orbiting relay spacecraft. Docking missions and missions to 
orbit small planetary bodies will require tight coupling 
between attitude control and navigation. The MDS solution 
is to build subsystems from common architectural elements, 
rather than the other way around. In this way, the 
interactions are more reliable by using common interaction 
management mechanisms and consistent knowledge 
representations for orbit dynamics, attitude dynamics, and 
kinematics. 

Figure 2.  System state is the MDS architectural 
clearinghouse for information processing. 



 
Graph state variables that model six degree of freedom 
transformations provide a common mathematical base and 
modeling mechanism for location and attitude relative states 
needed in the domains of navigation, guidance and control, 
and robotics. Six degree of freedom graph state variables are 
discussed further in section 5. 
 
 3. STATE 
State Variables 

The MDS architectural element for representing state is the 
state variable [2]. All users of state knowledge get it from 
state variables. An estimator weighs in evidence from 
measurements, commands, and other states to calculate an 
estimate for a state’s value. Only one version of a state’s 
estimate is represented, and it’s stored in a single state 
variable to discourage potentially inconsistent private 
estimations. A remote system, however, may need a copy of 
a state estimated on a different system. In this case, the 
estimating system sends new estimates to the remote 
system. The remote system accesses the copy, just as the 
local system accesses the original, except it is not allowed to 
change the copy. A state variable that contains such an 
immutable copy is called a proxy state variable. A state 
variable that is updated locally with an estimator is called a 
basis state variable. 
 
Some states are computed simply as functions of other 
states (i.e. their estimations do not incorporate 
measurements or commands). Such states are called derived 
state variables and the computations of their values are 
called derivations. This concept comes in handy later during 
the description of graph state variables. 
 
A state estimate is the system’s best guess of the “true” 
physical state. MDS recognizes that state estimates are not 
“truth” and requires that all state estimates include an 
assessment of uncertainty. 
 
MDS stores the state timeline for a basis or proxy state 
variable as functions of time in the state variable’s value 
history. Because a state’s value history implies its 
derivatives, MDS implicitly represents a state’s derivatives 
in its value histories. If an application needs an explicit 
representation of a state’s derivative, then MDS requires 
that the derivative be encapsulated and consistent with its 
value history. 
 
Absolute and Relative States 

In this section, we describe the requirements on graph state 
variables for representing relative states. Some states are 
absolute in nature and are independent from points of 
reference. Some examples of absolute states are 
 

 whether a pyrotechnic device is fired or not, 
 whether a parachute is stowed or deployed or 

separated, 

 whether a cable is cut or not, 
 whether a switch is open or closed, 
 whether an instrument is powered on or off, 
 the current flowing through a heater, and 
 propellant volume and pressure 

 
Certain key spacecraft states, however, represent relative 
rather than absolute quantities. Examples of relative states 
are 
 

 a spacecraft basebody orientation relative to the 
Earth Mean Equator 2000 coordinate frame, 

 the location of a spacecraft relative to the Earth, 
 the direction to the Sun relative to a spacecraft 

basebody coordinate frame,  
 the location of a rock relative to a rover arm end 

effector, 
 the voltage of an instrument’s high-voltage sensor 

grid relative to a spacecraft chassis, 
 the output power of a transmitter amplifier relative 

to its input signal, 
 the connectivity and data rate of a spacecraft 

instrument relative to an onboard communications 
bus, 

 the connectivity and data rate of a lander relative to 
an orbiting communications satellite or an Earth 
ground station, and 

 the heat transfer of an infrared detector relative to 
its radiator. 

 
MDS graph state variables were developed to recognize the 
requirement for explicitly representing relative states with 
respect to points of reference. For example, one cannot 
understand a 3-dimensional vector representing a 
spacecraft’s location without defining an origin (e.g. the 
Earth, Sun, or Mars barycenter) and a coordinate system 
(e.g. Earth Mean Equator 2000). Similarly, a quaternion 
representing a spacecraft’s orientation has no physical 
meaning without also specifying a reference coordinate 
system. 
 
It is always possible to treat such relative states as absolute 
by adopting a standard reference for all objects and 
specifying everything relative to that. This, however, is 
usually inconvenient. Core relationships are obscured since 
they are not explicitly modeled. Further, such absolute 
representations can be numerically imprecise. This makes 
the software less understandable, less reusable, and less 
reliable. 
 
Graph state variables are required to be able to derive 
relative states from others. For example, a voltage for a grid 
in an instrument is measured with respect to the 
instrument’s chassis voltage. The instrument chassis voltage 
is offset from the spacecraft ground. The grid’s voltage with 
respect to the spacecraft ground, therefore, is the sum of the 
two voltages. This also demonstrates the requirement for 
graph state variables to allow a point of reference to be used 
in the definition of more than one relative state. In the above 



example, the instrument’s chassis voltage reference is used 
to define the grid voltage as well as the chassis’s voltage 
offset relative to the spacecraft ground. 
 
A rover arm example demonstrates more compelling 
requirements for deriving relative states (see figure 3). A 
rover needs to autonomously control the relationship (d), 
the relative location of a rover’s end effector (D) with 
respect to a rock on the Mars surface (E). This relative state 
may be derived from a combination of relative states for 
location. Some states are estimated from measurements of 
arm joint angles: the effector with respect to the forearm (D 
w.r.t. C), the forearm with respect to the upper arm (C w.r.t. 
B), and the upper arm with respect to the rover body (B 
w.r.t. A). The rover body location with respect to the rock 
(A w.r.t. E), which may be estimated using binocular vision 
algorithms, is also a constituent of the derivation. The 
relative state for the end effector’s location w.r.t. rock may 
be derived as D->C->B->A->E. When the end effector is 
close to the rock, the effector’s proximity sensor may 
provide a more accurate estimate of the rock’s location. In 
this case, the directly measured estimate of the relative state 
D->E may be used instead of the longer derivation above. 
This demonstrates that graph state variables are required to 
be able to represent multiple derivations for the same 
relative state, and to be able to select between them. The 
selection between allowable derivations may be based on a 
property of the derivations, such as their accuracy. 
 
A rover traversal example demonstrates that graph state 
variables are required to accommodate the addition of new 
relative states and points of reference. A rover’s location 
state relative to a landing site may be derived from a 
sequence of location offsets between waypoint locations. 
Each offset between two waypoints is a relative location 
state, and each waypoint is a point of reference. New 
waypoints are identified as a new target for each traversal 
the rover makes across the Mars surface. New relative 
location states may be created as each new waypoint is 
identified. Each new relative location state is the location of 
the current waypoint with respect to the previous waypoint. 
The derivation for the rover’s location with respect to the 
landing site is computed from the sequence of relative 
location states going back to the landing site. 
 
A similar example is an interplanetary spacecraft that 
encounters scientific targets of opportunities during its 
mission. The locations of new targets are relative states that 
may represent the trajectory of a planetary object relative to 
another (e.g. a new comet relative to the Sun’s barycenter, 
or a new moon relative to a planet’s barycenter). The 
locations of such unplanned targets need to be added to the 
spacecraft’s knowledge. Further, to point at a new target, the 
spacecraft attitude control system needs to compose the 
relative location of the new target with other previously 
known location states to derive the location of the object 
with respect to the spacecraft. 
 

In addition to being a point of reference for multiple relative 
states of the same kind, graph state variables are required to 
allow a node to be a point of reference for more than one 
type of relative state. For example, a spacecraft gyro may be 
a point of reference for describing its location and 
orientation as a relative state. It may also be a point of 
reference for its voltage relative state. Finally, it may also be 
a point of reference for its connectivity relative state on the 
onboard communication network. 
 
The examples above demonstrate requirements on graph 
state variables to define, organize, and derive relative states 
that represent relationships between points of reference. 
 
 4. RELATIVE STATE REPRESENTATION TODAY 
Today’s spacecraft represent relative states usually in an 
implicit rather than explicit manner. For example, simple 
relative states such as voltages are generally implicitly 
understood to be offsets with respect to the spacecraft 
chassis ground. Also lacking in current space applications is 
a systematic representation of uncertainty. Some detailed 
examples from real spacecraft applications follow to 
demonstrate other areas of improvement that are addressed 
by graph state variables.  
 
Spacecraft attitude control systems typically estimate the 
spacecraft orientation relative state using onboard sensors 
that measure spacecraft rotation rates and directions to stars, 
the sun or nearby planetary bodies. Spacecraft orientation 
and directions to solar system bodies and stars are implicitly 
defined with respect to a coordinate frame reference (e.g. an 
inertial coordinate frame such as EME 2000). In many 
missions, there is no explicit representation in the onboard 
attitude control system of the spacecraft trajectory, or the 
orbits and rotations of the planetary bodies. When target 
directions are needed, the ground navigation system 
computes orbits and rotations using detailed ground based 
models and converts them into simplified propagation 
models. These models approximate the directions in the 
coordinate frame that the spacecraft implicitly uses and are 
uplinked to the onboard attitude control system. It in turn 

Figure 3.  Rover arm example. 
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uses them to produce directions at needed times for 
orienting the spacecraft, pointing its antennas and 
instruments, and avoiding harmful sun rays. 
 
The pointing system model that resides in the Cassini 
spacecraft attitude control system improves on this situation 
[3]. It explicitly represents the orbits of planetary bodies, the 
spacecraft trajectory, and orientations between coordinate 
frames. Translations between planetary bodies and the 
spacecraft, and rotations between coordinate frames are 
organized as edges in a tree. Each edge either represents a 
relative position or relative rotation between nodes. The 
relative positions are vectors between two location nodes 
(e.g. a planetary body and the Cassini spacecraft.)  The 
relative rotations are quaternions between two coordinate 
frame nodes (e.g. EME 2000 and the spacecraft local 
coordinate frame). Some nodes are used as reference points 
for both locations and coordinate frames. The direction of a 
planetary body relative to the spacecraft is computed by first 
finding the path in the tree between the body and spacecraft. 
The direction is computed by adding the sequence of vectors 
and applying the rotations along the path. A found path can 
be reused for computing a direction at a later time without 
having to search the tree. The onboard pointing system 
propagates the edge information as functions of time. The 
relative locations in the tree edges are uplinked conic or 
polynomial functions, and the relative rotations in the tree 
edges are linear functions using constant rotation rates. 
These functions and rates are commanded by the ground and 
are computed from more detailed ground based navigation 
models. 
 
JPL’s Deep Space 1 mission has an onboard navigation 
application called AutoNav that also contains a model of the 
spacecraft trajectory; however, it can autonomously update 
the model of the trajectory using asteroid sightings. 
AutoNav explicitly represents and propagates trajectory and 
orbit models within the navigation software, but in a form 
that is not directly understood by attitude control. Attitude 
control queries AutoNav for a direction to a planetary body, 
and AutoNav returns a direction that is implicitly in the 
Earth Mean Equator 2000 coordinate frame. Attitude control 
rotates this vector into the spacecraft coordinate frame using 
its estimate of the spacecraft’s attitude. AutoNav computes 
the direction for specific time by evaluating a polynomial 
function. When the flyby geometry changes too fast for 
repeated AutoNav queries, AutoNav provides attitude 
control with a first order approximation of the dynamics of 
the changing direction (an initial vector and a velocity 
vector). In this case, attitude control rather than AutoNav 
propagates the direction. AutoNav receives models of 
planetary orbits and spacecraft trajectory from the ground in 
the form of ephemeris files containing the polynomial 
coefficients. The ground software creates these by reducing 
a yet more accurate orbit representation in the ground 
navigation system. These more detailed ground 
representations are composed of sets of trajectory, 
ephemeris, and orientation files that represent relative 
location and orientation states. These relative locations and 

orientations are defined in terms of a set of coordinate 
frames and fixed locations corresponding to the spacecraft 
and planetary bodies. The relations are organized using a 
tree topology, where each coordinate frame or location is 
identified as a node in a tree. Relative translations and 
rotations are organized as edges between the nodes in two 
trees. One tree contains all the translations and another 
contains all the rotations. These translations and rotations 
can be composed to derive new relative states by following 
paths within the trees. 
 
The Mars Exploration Rover is planning to use a set of 
frames for translating between the current rover location on 
the surface, its previous Mars surface positions, and its next 
target location. The frames also represent the rover’s 
orientation with respect to the Mars surface. The rover’s 
arm also has a system for representing the relative states 
between its elements and science targets. 
 
Common to these applications is the observation that only a 
single derivation is allowed because of the use of tree 
topology to represent relationships. In addition, there may 
not be a systematic representation for the same relative 
states shared between various mission applications in the 
same or neighboring system. Further there is no explicit 
representation of uncertainty in the applications’ software 
architecture. MDS graph state variables provide the same 
functionality as these applications while also overcoming 
their shortcomings. 
 
 5. MDS GRAPH STATE VARIABLES 
MDS graph state variables (GSVs) provide a general graph-
based state representation for expressing relative states and 
their uncertainties in an explicit fashion. A summary 
definition of graph state variables is described below and 
explained further in following subsections. 
 
Definitions 

The following is a summary definition of GSVs. A node 
within a graph state variable names point of reference. A 
relationship within a graph state variable is a relative state 
between two nodes. Relationships have uncertainty and 
direction and relationships are transitive and invertible. A 
relationship’s direction starts at its “from” node and ends at 
its “to” node. A direct relationship within a graph state 
variable is abstracted as an edge between two nodes, where 
the edge references a state variable that holds or derives the 
value and uncertainty of the relationship between the two 
nodes. The collection of edges and nodes in a graph state 
variable form a graph. A path within a graph state variable 
is a sequence of nodes, where adjacent nodes in the 
sequence must have an edge between them in the graph, and 
no two adjacent pairs of nodes can be repeated. A derived 
relationship within a graph state variable is a relationship 
computed by concatenating the relationships along a path 
that has 3 or more nodes. A derivation is cached path that a 
graph state variable can re-evaluate to compute a derived 
relationship. There are three kinds of graph state variables: 



basis, proxy, and composite. A basis graph state variable is 
comprised of direct relationships that are computed from 
basis or derived state variables. A proxy state variable is 
comprised of direct relationships that are computed from 
proxy state variables. A composite graph state variable is 
comprised of graph state variables that are connected by 
sharing one or more nodes. Dependencies represent 
correlations of knowledge between direct relationships in a 
graph state variable and are stored in a dependency state 
variable. The Unified Modeling Language diagram in figure 
4 depicts these definitions as architectural elements within 
the context of MDS estimators.  
 
Nodes and Direct Relationships 

A graph state variable knows about a set of reference points, 
called nodes. Each node in a graph state variable has at least 
one direct relationship with another node in the same GSV. 
Each direct relationship is a relative state with an 
uncertainty and is abstracted as a directed edge between two 
nodes in the graph state variable’s graph. A direct 
relationship’s direction starts at its “from” node and ends at 
its “to” node. The set of nodes and edges in a graph state 
variable comprise a graph state variable’s graph. 
 
A graph state variable only knows about direct relationships 
of a certain type. For example, a voltage graph state variable 
only knows about relative voltage states between its nodes. 
Other types of graph state variables may be for 
telecommunications gain relationships, network 
connectivity relationships, or location or rotation 
relationships. If a node is used as a point of reference for 
more than one type of relative state, then the same node may 
be known by graph state variables of different types. For 
example, a node representing a spacecraft’s gyroscope may 
be used in both a rotation graph state variable and a 
communications connectivity graph state variable. 

 
The rover arm example in section 3 can be described in 
terms of a 6 degree of freedom (6 DOF) graph state variable. 
Each of its direct relationships is a 6 DOF transformation. A 
6 DOF transformation contains both a translation, a rotation, 
and their derivatives. Three degrees are the x, y, and z 
coordinates of its location. The other three represent the 
rotation as a unit vector and the rotation angle about it. A 
6DOF relationship in the GSV represents a combined 
relative location and orientation state that has direction and 
uncertainty, and is transitive and invertible. Each node in 
this GSV is a 6 DOF reference point for its object, where the 
object is a rigid body. 6 DOF reference points are called 
frames. Each has a coordinate frame with: 
 
(1) The coordinate frame’s origin fixed to a location for its 

frame’s object, and 
(2) The coordinate frame’s axes fixed within the frame’s 

object. 
 
A 6 DOF GSV for the rover arm example knows about 
nodes for the end effector frame (D), the forearm frame (C), 
the upper arm frame (B), the rover body frame (A), and the 
rock frame (E). These frames can be seen as nodes in figure 
5. The relationship d is the 6DOF transformation from the 
end effector frame (D) to the rock frame (E). Similar 
relationships exist from frame A to frame B (denoted RAB), 
as well as RBC , RCD , and RAE. If two of the nodes’ 
coordinate frames are in alignment, for example the Mars 
landing site and the rock, then the 6 DOF direct relationship 
between them would be a translation with a null rotation.  
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Each GSV direct relationship/edge may be explicitly 
represented in the software as its own state variable. On the 
other hand, some direct relationships/edges may be may be 
represented in a more implicit fashion. For example, each 
may be computed from a different element in the same state 
variable. This case is discussed further in the derived 
relationships section below. 
 
Derived Relationships 

A graph state variable computes the relative state between 
any two of its nodes. The nodes may be non-adjacent; they 
may not have a direct relationship between them. A GSV 
can derive a relative state’s value for non-adjacent nodes in 
the GSV by concatenating the direct relationships along a 
path between the two nodes. A path within a graph state 
variable is a sequence of nodes, where adjacent nodes in the 
sequence must have an edge between them in the graph, and 
no two adjacent pairs of nodes can be repeated. GSVs 
require that a relative state relationship type be invertible 
and transitive. For a relationship type to be invertible, a 
value of this type for the relationship from node A to node B 
implies that a relationship value from node B to node A can 
be computed. Note that an inverted relationship value is 
allowed to be “unknown” (i.e. having and uncertainty of 1) 
and still be defined. For a relationship type to be transitive, 
instances of it concatenated together must also be an 
instance of the relationship type. For example, if a direct 
relationship instance RAB exists from (A) to (B), and if 
another RBC exists from (B) to (C), and both are instances of 
a transitive relationship, then a derived relationship instance 
RAC exists for the relationship from (A) to (C). A derived 
relationship is computed using a concatenation operator (•) 
defined for each relationship type. Thus RAC  = RAB • RBC, 
where RAC is of the same type as RAB and RAC. 
 
In the rover arm example above, the relationship type, a 6 
DOF transformation, is invertible and transitive. The 
relative state for the end effector’s (D) position and 
orientation with respect to the rock (E) can be a derived 

relationship. Its derivation is the concatenation, and 
inversion where needed, of the direct relationships RCD, RBC, 
RAB, and  RAE. More explicitly, a derivation for RDE is (RCD)-1

 
• (RBC)-1

 • (RAB)-1
  •  RAE . 

 
Note that a direct relationship may itself be a derived state 
variable. In a new graph state variable example, a rover’s 
traversability relationship between locations on a map may 
be computed from a sequence of moves within a grid. Each 
move has a traversability relationship. The traversability for 
any particular move may be computed from an NxN 
elevation map state that is estimated from camera 
observations. It would make no sense to pre-compute the 
traversability relationship of each possible move. The 
number of direct traversability relationships would be very 
large. Further, many are in the wrong direction or may be 
eventually discounted as being too difficult to cross. One 
approach is to compute traversability relationships only as 
needed by accessing a derived state variable that computes 
the traversability between two adjacent locations in the 
elevation map. In this case, a GSV may represent direct 
relationships as queries on the derived state, rather than by 
storing each direct relationship within the GSV. 
 
Alternative Derivations 

A graph state variable can select between alternative 
derivation paths. A graph can have loops that produce 
multiple paths between two nodes. This creates the 
possibility of two or more potentially different relationships 
between two nodes (given that the information in the GSV 
is never perfect). This is useful when there needs to be more 
than one possible way to derive a relative state. In this case, 
an application includes a path arbitration criterion that the 
graph state variable uses to select between possible 
derivations. If the user needs only “reasonable” derivations, 
the adapter can provide a pass/fail criteria. In this case, the 
graph state variable will only return derivations that pass the 
criteria. If a user needs only the n “best” derivations, then 
the adapter can provide a utility function that the GSV uses 
to return the n derivations that have highest value. 
 
The rover arm example above has two possible derivation 
paths for the distance, d, between the end effector (D) and 
the rock (E): D->E and D->C->B->A->E. The GSV should 
return the distance directly sensed by a proximity sensor on 
the end effector (D->E) when it is close to the rock. In this 
case the discriminating factor may be the derivation’s 
uncertainty. The directly sensed distance may have a much 
smaller uncertainty that the indirect longer derivation when 
the end effector is close to the rock. The utility function 
would simply return the certainty for each derivation passed 
to it. The GSV would choose one derivation (i.e. n=1) that 
has the best value (e.g. greatest certainty). 
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Figure 5. Rover arm example graph state variable. 



Graph state variables also allow for the use of both a utility 
function and a pass/fail criteria together. In this way an 
adapter can have the GSV return the n best derivations that 
satisfy a pass/fail criteria.  
 
Basis and Proxy Graph State Variables 

A GSV is composed of a collection of nodes and the direct 
relationships that connect them. Each direct relationship is 
stored in a state variable. GSVs whose direct relationships 
are basis or derived state variables are called basis graph 
state variables (BGSVs). Each basis graph state variable 
contains direct relationships that are estimated in the local 
deployment by the same estimator. The proxy pattern for 
state variables is repeated here for GSVs. A proxy graph 
state variable (PGSV) is composed of direct relationships 
that are estimated in a separate deployment by the same 
estimator. Each direct relationship referenced in a proxy 
GSV is stored in a proxy state variable. In a sense, a proxy 
GSV is a mirror of a basis GSV. 
 
In the rover arm example discussed earlier, basis graph state 
variable BGSV2 contains rover estimates of the 6 DOF 
relationship between its location (A) and the landing site. 
BGSV2 also contains estimates of the location of the rock 
(E) relative to the location of the rover (A). Similarly, the 
rover estimates the 6DOF relationships for its articulated 
antenna and upper arm (B) relative to the location and 
coordinate frame of the rover body (A) and stores the 
estimates in BGSV4. The 6DOF transformations between 
the rover arm elements are also estimated by the rover and 
stored in BGSV4. All transformations for the articulated 
elements are stored in the same BGSV because they are 
correlated and estimated by the same estimator. Correlated 
relationships will be discussed further in the dependencies 
section below. The rover’s estimate of the rock’s (E) 6 DOF 
relationship relative to the end effector (D) using the 
proximity sensor is stored in BGSV3. What remains are the 
relationships that are estimated on the ground and copied 
into the proxy graph state variable PGSV1. These 
relationships include orbits for the Earth and Mars relative 
to the Sun, and the location of the landing site on Mars 
relative to the Mars frame. 
 
Composite Graph State Variables 

A GSV may be composed of other GSVs. Such a GSV is 
called a composite graph state variable (CGSV). A CGSV 
can derive new relationships from the relationships that are 
in its various constituent GSVs. Common nodes that appear 
in more than one of the constituent GSVs provide the bridge 
that links them together. This allows relationship derivation 
paths to extend over different GSVs. A composite GSV can 
link sets of direct relationships that are estimated in both 
local (Basis GSVs) and remote (Proxy GSVs) deployments 
using this mechanism. Further, a composite GSV allows for 
a hierarchical organization of sets of relationships. A 
composite GSV is not limited to be composed of BGSVs or 
PGSVs. It may have as constituents other composite GSVs. 

A hierarchy of collections of relationships can be created, 
by having CGSVs, within CGSVs, within CGSVs, etc. 
 
The rover arm example above has a single composite graph 
state variable named the Frame Composite GSV. It is 
composed of 4 constituent GSVs: PGSV1, BGSV2, 
BGSV3, BGSV4. The landing site node links the proxy 
graph state variable for ground estimated navigation 6DOF 
states (PGSV1) and the rover estimated navigation 6DOF 
states (BGSV2). The rover body node (A) links the rover 
estimated navigation states with the 6DOF relationships 
between the articulated elements (BGSV4). Finally, BGSV3 
is a bit of a special case. It contains the directly measured 
relationship between the end effector (D) and the rock (E). 
Thus, it provides two links which allow comparison of the 
estimate of the rock’s location (E) using navigation and 
vision algorithms (BGSV2) and rover arm kinematics 
(BGSV4) with the directly measured relationship (BGSV3). 
 
Dependencies 

GSVs use dependencies to compute the uncertainties of 
derived relationships. Dependencies represent correlations 
of knowledge between the direct relationships in a graph 
state variable. Dependencies are stored or derived in a state 
variable referenced by its GSV. 
 
For example, suppose two direct relationships in a GSV are 
A and B, where each has an uncertainty that is represented 
as a normal distribution with variances σA

2 and σB
2, 

respectively. Then the dependency in the GSV may be the 
covariance of A and B, denoted as cov(A,B). If the derived 
relationship A•B is computed using subtraction then A•B = 
A-B and the GSV computes the uncertainty of A•B as 
σA

2+σB
2-2cov(A,B). Other types of dependencies are 

possible, depending on the nature of the relationships. 
 
The rover arm example above contains 3 direct relationships 
in BGSV4 that represent relative locations and orientations 
of the rover body, upper arm, forearm, and end effector. 
Suppose each direct relationship is estimated using 
measurements from different potentiometers, each of which 
measures a particular joint angle. If the same A-to-D 
converter digitizes the voltages from all potentiometers, 
then a bias in the A-to-D converter affects all conversions. 
Thus, each estimate of a rover arm direct relationship is 
offset by the same bias and is correlated with the other rover 
arm direct relationships. In this case, the dependency state 
variable contains the correlations needed to compute the 
uncertainties of the derived relationship D->A.  
 
Dynamic Topology 

Some missions need to add relationships and nodes as new 
objects of interest in the environment are identified. 
Examples include science targets identified by a rover along 
the surface of Mars, opportunistic spacecraft observations 
during flybys, and asteroids added for optical navigation 
purposes. Once these targets have been observed, they may 
no longer be relevant to a spacecraft’s future operations. In 



these cases their relationships and nodes should be deleted. 
In some cases, the set of direct relationships changes 
without adding new nodes. For example, spacecraft position 
may be estimated with respect to the Earth immediately 
after launch. Later during interplanetary cruise, it is 
estimated with respect to the Sun (or the Solar System 
Barycenter). Finally, it may be estimated with respect to a 
planetary body for an upcoming flyby or orbit insertion. 
These planetary objects are typically identified and tracked 
prior to launch; however, a new direct relationship to 
represent trajectory may need to be established when a 
spacecraft comes under the gravitational influence of a 
nearby planetary object. 
 
These examples demonstrate there is need for graph state 
variables to accommodate the addition and removal of 
relative states and reference points. To meet these 
necessities, graph state variables include methods for adding 
and deleting nodes and direct relationships. The underlying 
MDS component software architecture provides for adding 
and connecting to a GSV new state variables that 
correspond to new direct relationships. It also allows for 
disconnecting and removing state variables. GSV path 
arbitration criteria that favor certain derived relationships 
will guide the use of a new direct relationship rather than 
less desirable derivations. 
 
Points of Reference 

Each node in a GSV may be used as a point of reference by 
other states. For example, the direction of a camera 
boresight and the force direction of a thruster are states that 
need to be defined in terms of a coordinate frame point of 
reference. 6 DOF graph state variables that have frame 
nodes for the instrument and the thruster provide frames of 
reference for their directions. A 6 DOF GSV may be used to 

rotate the camera’s boresight direction into the correct frame 
for comparison against the Sun’s direction. Hazard 
avoidance algorithms may use this to prevent pointing the 
camera into the Sun. Similarly, a 6 DOF GSV may be used 
to rotate the thruster’s force direction into the same frame as 
the spacecraft center of mass for computing imparted 
torques. In general, 6 DOF GSVs provide a mechanism to 
relate vectors (and tensors for moments of inertia) that are 
defined in terms of different frames of reference. 
 
Performance 

The search for a path between two nodes may be too slow 
for applications containing large graphs or high rate 
derivations. Graph state variables have a number of features 
that allow an adapter to reduce the time for deriving a 
relationship. 

Cached Paths—Graph state variables provide a capability 
for returning derived relationships in a small amount of time 
for frequently repeated queries. If a repeated derivation is 
along the same path, an application may save the path 
returned by a query. A saved path is called a derivation. A 
derivation may be re-evaluated in subsequent relationship 
queries to avoid the overhead of searching the graph. 
Derivations may be automatically invalidated and a new 
path computed when a direct relationship along the path 
changes or a change in the graph’s topology warrants it. A 
graph state variable may also keep relationship data about 
“now” more quickly accessible that data for other, less 
frequently requested times. 

Domain Specific Search Algorithms—In addition to 
providing generic search algorithms for finding paths, graph 
state variables allow an application to specify its own search 
algorithm. This enables an application to use knowledge of 
its domain to improve its graph search performance.  
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Search Algorithm Hints—Graph state variables provide a 
capability that allows an adapter to provide search hints. A 
hint can be specified in a relationship query and used by the 
search algorithm to direct searches. A hint may take a 
variety of forms. For example, the search algorithm may 
interpret a path arbitration criterion as a search hint. 

Another may be a partial path screening criterion. A GSV 
may use it to eliminate candidate partial paths during each 
step of its graph search algorithm. A partial path screening 
criterion is like a pass/fail path arbitration criteria and it 
applies to partial paths. Many possible criteria are possible. 
Examples are functions of the path’s nodes, direct 
relationships, or the relationship the partial path represents. 

Another type of hint is a partial path prioritization function. 
The search algorithm uses it to select the next path explored 
during each step of a graph search algorithm. A partial path 
prioritization function is like a path arbitration criteria utility 
function except it applies to partial paths. 
 
 6. MARS EDL EXAMPLE  
6DOF navigation relationships in a Mars entry, descent, and 
landing GSV prototype adaptation is depicted in figure 6. 

The spacecraft attitude and location is a relative state that 
represents the translation and rotation of the spacecraft 
basebody frame with respect to the Mars-centered inertial 
frame. The Mars-centered Mars-fixed frame is a rotating 
frame with respect to the Mars-centered inertial frame. The 
Mars surface fixed frame is the initially targeted landing site 
and is related to the Mars-centered Mars-fixed frame by a 
location offset from the center of Mars, and by a rotation 
that has the Z-axis vertical and X and Y axes along Mars 
longitude and latitude lines, respectively. The re-target 
frame is a location offset from the Mars surface fixed frame 
used if a hazard is detected during landing. 
 
In addition to these navigation frames, there are frames to 
represent locations and orientations for the following 
spacecraft elements: 
 

 the location of the spacecraft center of mass, 
 the location of spacecraft roll thrusters, 
 the location of descent engines, and 
 the location and orientation of an ideal sensor that 

measures the spacecraft location and orientation. 
 
(A true flight application would contain separate frames for 
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rotation measurement devices (e.g. gyroscopes), 
accelerometers, a star tracker, radar and lidar. These have 
been abstracted for the purposes of the prototype and will be 
added in future versions.) The spacecraft center of mass 
frame relative to the spacecraft basebody is a location offset 
represented as a 6 DOF relationship with a null rotation. 
Similarly, the thruster and descent engine frames are defined 
in terms of relative states that are only translations with 
respect to the spacecraft basebody frame. Finally, the ideal 
sensor is just a stand in for more realistic sensors, so its 
frame’s relationship with the spacecraft basebody frame is a 
constant identity transformation (null rotation and 
translation). 
 
All frames and relationships are collected into 5 basis state 
variables within the frame composite graph state variable 
shown in figure 7. Each of the relationships is stored in a 
basis state variable. The thruster, descent engine, and ideal 
sensor frames and their relationships are gathered into the 
same basis GSV because these represent calibration 
parameters for device alignments. Such parameters are 
typically estimated on the ground and uplinked together to 
the spacecraft. Thus, they are collected into the same GSV. 
If they were actually uplinked from the ground, these 
relationships would be stored in proxy state variables and 
collected into the same proxy GSV. The center of mass 
offset from the origin of the spacecraft basebody frame 
would be estimated from fuel depletion in its own estimator 
and is, therefore, in its own basis GSV. The center of mass 
offset would be derived from two component state 
variables: one a static uplinked parameter based on the 
spacecraft dry mass, and the other derived onboard from a 
propellant state variable. The spacecraft attitude and 
position 6 DOF relationship (MCI to SC) is in its own basis 
GSV because it is estimated by the spacecraft in a separate 
6DOF estimator. The relationships between the Mars 
inertial and fixed frames are in the same basis graph state 
variable because they would be estimated on the ground by 
the navigators. Again, in a real application, these would also 
be proxies. The re-target frame position offset is within its 
own basis GSV because a separate onboard algorithm for 
hazard avoidance will eventually estimate it using radar and 
lidar measurements. 
 
Thruster and descent engine force direction states are 
defined as unit vectors in terms of reference points for their 
individual frames. The torque for roll thruster “i” is 
computed by the following formula: 
 
Torquei = 
[COM to RTi X Thrusteri Force Direction] * Thrust Leveli 
 
COM to RTi is the derived location relationship along the 
path from the Center of Mass Frame, to the Spacecraft 
Basebody frame, and then to the frame for Roll Thruster i. 
Thrusteri Force Direction has been rotated into the Center of 
Mass Frame using the inverse of the derived 6 DOF 
transformation along the same path. 
 

The descent engine torques are computed in the same 
fashion. The spacecraft moment of inertia is another state 
that is defined in terms of a frame reference point. In this 
case it is the center of mass frame. This along with the state 
for the spacecraft mass defines the spacecraft inertial 
properties. 
 
The spacecraft position and orientation controllers control 
the relationship of the spacecraft basebody frame w.r.t. the 
re-target frame. Given an orientation and position profile 
goal, they compute the thrust levels using the previously 
described torque and inertial properties models and 
transformations in the 6 DOF composite GSV. 
 
 7. SYSTEMS ENGINEERING OF RELATIVE STATES 
MDS state analysis is a model-based process to aid systems 
and software engineering. State analysis prompts systems 
engineers to perform a methodical discovery process and 
rigorous analysis of mission requirements in terms of MDS 
architectural elements. These architectural elements have a 
one-to-one correspondence to specific MDS software 
frameworks that need to be adapted by software engineers to 
meet the requirements in the state analysis. In this way, the 
software implementation has a much better chance of 
meeting mission requirements. 
 
Graph state variables extend MDS state analysis to provide 
both a systems engineering methodology for explicitly 
describing required relative states and an unambiguous way 
for transforming the requirements into elements to be 
adapted in the software architecture. The GSV extensions to 
state analysis are described below. 
 
The system engineer determines the set of relative states 
required to meet mission requirements. The system engineer 
identifies the types of relationships that model the relative 
states required. MDS plans to develop relationship types for 
relative states that are common to space applications. If, 
however, a required relationship type is not already 
provided by MDS, the systems engineer determines the 
mathematical form for describing the relationship. In 
addition, he determines the formulas for inverting and 
concatenating relationships. These will be used in the 
adaptation of the MDS provided graph state variable 
framework to compute derived relationships. The software 
engineer creates a relationship software type that meets the 
relationship’s mathematical properties and implements the 
invert and concatenation operators. 
 
The system engineer identifies the points of reference 
(nodes) for each of the relative states required to be 
modeled. The system engineer identifies the direct 
relationships required to represent basis relative states, and 
the derived relationships that use them required for 
representing derived relative states. The system engineer 
determines for each direct relationship whether it will be 
represented explicitly between pairs of reference points as 
individual states. If there are many possible direct 



relationships, he may determine an algorithm for deriving 
them from a composite state. In this case, the software 
engineer codes the algorithm used by the GSV for deriving 
direct relationships. If the direct relationships will be 
represented as individual states, the software engineer 
identifies each state. The software engineer instantiates each 
of these as a basis (or derived) state variable in the 
deployment (spacecraft and/or ground) that estimates (or 
derives) it. The system engineer identifies the basis state 
variables that are needed as direct relationships in other 
deployments, and the software engineer instantiates each as 
a proxy state variable in each deployment that needs it. 
 
For each estimator in a deployment, the system engineer 
groups the direct relationships that are estimated by it, and 
the nodes the direct relationships share into a basis graph 
state variable for that deployment. Similarly, the system 
engineer groups the direct relationships stored in proxy state 
variables within the same deployment and the nodes they 
share into proxy graph state variables for that deployment. 
The software engineer creates software instances of these 
basis and proxy graph state variables within the 
deployments they belong. Finally, the software engineer 
builds a composite GSV in each deployment from the basis 
and proxy GSVs of the same relationship type. 
 
 8. CONCLUSIONS 
The MDS architecture and graph state variables are a 
foundation for spacecraft software that can meet the 
ambitious autonomy challenges of future space exploration 
missions. Graph state variables meet key MDS architectural 
themes to explicitly model states and join attitude control, 
navigation, and robotics. They provide a common reusable 
framework that will allow easy management of attitude 
control, navigation, and robotics interactions and provide for 
shared systematically engineered data. Graph state variable 
six degree of freedom relationships provide a common 
mathematical base for representing relative states for 
spacecraft orientation, location, trajectories, dynamics, and 
kinematics. In addition, because graph state variables have 
been designed in an adaptable abstract model, they can be 
adapted for the power, telecommunications, and networking 
domains, and possibly others. Graph state variables provide 
a common framework for unambiguously and 
systematically describing system engineering requirements 
on relative states and a process for implementing them 
reliably in software. 
 
In summary, graph state variables: 
 
(1) explicitly represent relative states as relationships 

between reference points, 
(2) explicitly model the composition of derived relative 

states from elemental relative states, 
(3) combine multiple sets of relative states (sub-graphs) 

estimated separately or copied from remote locations, 
(4) produce different results for different derivation paths 

and select between them,  

(5) accommodate graph topology changes - addition or 
deletion of reference points and relative states,  

(6) represent dependencies between relative states 
 (e.g. correlations).  
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